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Abstract
Quantum electrodynamics (QED) fixed in the ’t Hooft–Veltman gauge is
renormalized to three loops in the MS scheme. The β-functions and anomalous
dimensions are computed as functions of the usual QED coupling and the
additional coupling, ξ , which is introduced as part of the nonlinear gauge-fixing
condition. Similar to the maximal Abelian gauge of quantum chromodynamics,
the renormalization of the gauge parameter is singular.

PACS numbers: 11.10.Gh, 11.15.Bt, 12.20.Ds

1. Introduction

Gauge theories are the underlying quantum field theory describing the physics of the
fundamental properties of nature. For instance, the field theory describing the strong
interaction, quantum chromodynamics (QCD), is based on a non-Abelian colour group and
exhibits asymptotic freedom [1, 2], whereby the basic quarks and gluons effectively behave
as free particles at very high energies. Indeed, this property allows one to apply perturbation
theory to describe strong physics phenomena such as deep inelastic scattering to very high
precision. One fundamental reason for the basic feature of asymptotic freedom [1, 2] is
the self-interaction of the gluon which is a natural consequence of the generalization of the
Abelian gauge theory of quantum electrodynamics (QED) to the non-Abelian gauge group.
The consequent nonlinearities introduced in this extension provide a richer structure not
present in the dynamics of electrons and photons. In order to perform quantum calculations
to determine the properties of a gauge theory, one has to first fix the gauge to ensure that only
the physical degrees of freedom are taken into account. There is a large range of choices as to
how to eliminate the unphysical degrees of freedom. In general, such choices can be classified
roughly under various headings, such as covariant or non-covariant, linear or nonlinear and
physical or unphysical. (For a comprehensive review see, for example, [3].) Ordinarily,
when one wishes to perform high-precision and therefore high-loop calculations, one chooses
linear covariant gauges (which are not physical) such as the Landau or Feynman gauge. This
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is primarily because their covariant, though unphysical, nature does not overcomplicate the
resultant (massless) Feynman diagrams. By contrast other gauges, whilst being motivated by
physical considerations, such as the Coulomb gauge, are not necessarily renormalizable. If
they can be proved to be renormalizable at a formal level, then it is not always clear whether
loop integrals beyond one loop can be computed [3]. However, irrespective of how one fixes
the gauge, one fundamental feature is always present and that is that physical predictions
must always be independent of the choice of gauge. As the bulk of multiloop calculations
are performed in linear covariant gauges and mass-independent renormalization schemes, one
check in this instance is that the covariant gauge-fixing parameter, α, must be absent in the
determination of physical quantities or objects which are clearly gauge independent or gauge
invariant [4]. Indeed, this property provides a powerful checking tool in intricate multiloop
calculations.

Although linear covariant gauges have been examined in detail, there has been recent
interest in nonlinear covariant gauges due to their potential connection with the infrared
dynamics of non-Abelian gauge theories [5, 6]. For instance, the Curci–Ferrari gauge [7]
and maximal Abelian gauge (MAG) [8–10] have been studied where the aim was to examine
the Abelian dominance hypothesis [8, 11–13]. Briefly, the gluons in the centre of the colour
group are believed to dominate the infrared sector due to the off-diagonal gluons acquiring a
dynamical mass greater than that of the centre gluons. The latter are then central to Abelian
monopole condensation that is believed to drive the confinement mechanism [8, 11–13].
However, from a practical point of view, to perform any calculations in such nonlinear
gauges one needs to renormalize the gauge theory to as high a loop order as is possible.
This has been achieved for both the Curci–Ferrari gauge and MAG in the MS scheme at
three loops [14, 15]. From the point of view of trying to understand basic features of
covariant nonlinearly gauge-fixed gauge theories both these gauges have common properties.
For instance, unlike linear covariant gauges they have quartic ghost interactions, and the
corresponding gauge parameters get non-trivial renormalization. Further in the case of the
MAG this gauge parameter renormalization is singular. Though gauge-independent quantities,
such as the β-function, correctly emerge as gauge parameter independent. Whilst these gauges
are essentially related by construction to the non-Abelian aspect of the gauge theory itself, one
natural question to ask is, is this a feature in other nonlinear gauges when one has an Abelian
structure.

Clearly, QED is invariably treated in a linear covariant gauge. However, with the explosion
of interest in gauge theories in the early 1970s, QED was gauge fixed in a nonlinear gauge
known as the ’t Hooft–Veltman gauge [16], and shown to be renormalizable. The primary
interest in this gauge fixing was that the nonlinearity naturally introduced an Abelian gauge
theory which mimicked QCD. This was due not only to the presence of interacting Faddeev–
Popov ghosts but also triple and quartic photon self-interactions. As the latter do not appear
in linear covariant gauges in QED, the ’t Hooft–Veltman gauge clearly could be used as a
laboratory to study simple issues related to gauge field self-interaction. Indeed in [17, 18],
a one-loop calculation showed that the corresponding covariant gauge-fixing parameter was
renormalized. Therefore, in light of these observations it is the purpose of this paper to record
the full three-loop renormalization of QED in the ’t Hooft–Veltman gauge. Indeed, as far as
we are aware this will represent the first detailed multiloop study of the renormalization of
QED in the ’t Hooft–Veltman gauge. We will construct all the renormalization group functions
in the MS scheme including the β-function of the electron–photon coupling constant which
will agree with the already established results of [19–22].



Three-loop MS renormalization of QED in the ’t Hooft–Veltman gauge 13991

The paper is organized as follows. The relevant properties of QED gauge fixed in the ’t
Hooft–Veltman gauge are discussed in section 2 with the details of the full renormalization
given in section 3. Concluding comments are provided in section 4.

2. Background

First, we introduce the ’t Hooft–Veltman gauge in QED [16], and the notation and conventions
that we will use. The key ingredient is the gauge-fixing functional, F[Aµ], which slots into
the conventional path integral formalism for constructing a quantized gauge theory. Here Aµ

is the photon field. We take

F[Aµ] = ∂µAµ + 1
2ξAµAµ, (2.1)

which is clearly nonlinear where for the moment ξ is a parameter and α is the gauge-fixing
parameter. Clearly, when ξ = 0 one recovers the usual linear gauge-fixing functional whence
α becomes equivalent to the gauge parameter of those gauges. In other studies of the ’t Hooft–
Veltman gauge, however, ξ was invariably fixed to certain numerical values such as 1 or 2.
We leave it as a free parameter here, and given that eventually it will appear with the triple and
quartic photon self-interactions we will regard it as a coupling constant which will run. It is
not to be confused with the usual gauge-coupling constant, e, which is present in the covariant
derivative when electrons are present. Therefore we are in effect working with a two-coupling
theory. Though in the absence of electrons, whilst photon self-interactions are present, the
field theory is effectively a free theory of photons since the physics cannot be altered by the
gauge fixing. This feature ought to emerge in the computations. Hence, the full Lagrangian
for Nf massless electrons in the ’t Hooft–Veltman gauge is [16],

L = − 1
4FµνFµν + c̄∂µ∂µc + ξ c̄Aµ∂µc + b

(
∂µAµ + 1

2ξAµAµ

)
+ 1

2αb2 + iψ̄D/ψ, (2.2)

where ψ is the electron field, c and c̄ are the Faddeev–Popov ghosts emerging from the path
integral formalism and b is the Nakanishi–Lautrup auxiliary field which arises in the off-shell
BRST formalism. Eliminating it by its equation of motion produces the Lagrangian in the
form we will treat it

L = −1

4
FµνFµν + c̄∂µ∂µc + ξ c̄Aµ∂µc − 1

2α

(
∂µAµ +

1

2
ξAµAµ

)2

+ iψ̄D/ψ. (2.3)

Ordinarily, in a linear covariant gauge in QED one drops the Faddeev–Popov ghosts from (2.3)
when ξ = 0, since they do not couple to photons or electrons. For ξ �= 0, this is not possible
and they are not only present but play a key role in the full renormalization of the theory. The
covariant derivative, Dµ, is defined by

Dµ = ∂µ + ieAµ. (2.4)

Unlike the Curci–Ferrari gauge and the MAG in QCD, there is no quartic ghost self-interaction
which is due to the absence of a colour index on the ghost fields meaning that c(x)c(x) =
0 due to their anticommuting property. The Feynman rules for (2.3) are straightforward to
derive but the interested reader can view them in [23]. By construction, (2.2) is invariant under
the BRST symmetry [18],

δAµ = −∂µc, δc = 0, δc̄ = b, δb = 0, δψ = iecψ (2.5)

which is clearly nilpotent.
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3. Renormalization

We turn now to the details of our three-loop MS renormalization. If we regard the fields and
parameters of (2.3) as bare then to renormalize (2.3), we introduce renormalized fields and
variables by

A
µ
o =

√
ZAAµ, co =

√
Zcc, c̄o =

√
Zcc̄, ψo = √

Zψψ,

eo = µεZee, ξo = µεZξξ, αo = Z−1
α ZAα,

(3.1)

where the subscript o denotes a bare quantity. We have also chosen to follow the same
convention as [14] for the definition of the renormalization of the gauge parameter α. With
this convention it is the combination ZAZ−1

α which is unity in the linear covariant gauge after
renormalization. As we will use dimensional regularization in d = 4 − 2ε dimensions with ε

as the regularizing parameter, the renormalization scale µ has been introduced to ensure that
both renormalized couplings e and ξ remain dimensionless in d dimensions. In principle, all
the renormalization constants will be functions of both (renormalized) couplings. However, it
transpires that both the β-function of e and the photon anomalous dimension are independent
of ξ . Therefore, the information determined from the MS renormalization will be encoded in
the renormalization group functions. The β-functions are given by

µ
∂a

∂µ
= βa(a) = 1

2
(d − 4)a − 2aβa(a)

∂

∂a
ln Ze

µ
∂z

∂µ
= βz(a, z) = 1

2
(d − 4)z − 2zβa(a)

∂

∂a
ln Zξ − 2zβz(a, z)

∂

∂z
ln Zξ .

(3.2)

The anomalous dimensions are defined in the usual way by, (see, for example [24]),

γA(a) = ∂ ln ZA

∂ ln µ
, γα(a, z) = ∂ ln α

∂ ln µ
,

γc(a, z) = ∂ ln Zc

∂ ln µ
, γψ(a, z) = ∂ ln Zψ

∂ ln µ

(3.3)

from which it is straightforward to deduce

γA(a) = βa(a)
∂

∂a
ln ZA + βz(a, z)

∂

∂z
ln ZA + αγα(a, z)

∂

∂α
ln ZA

γα(a, z) =
[
βa(a)

∂

∂a
ln Zα + βz(a)

∂

∂z
ln Zα − γA(a)

] [
1 − α

∂

∂α
ln Zα

]−1

γc(a, z) = βa(a)
∂

∂a
ln Zc + βz(a, z)

∂

∂z
ln Zc + αγα(a, z)

∂

∂α
ln Zc

γψ(a, z) = βa(a)
∂

∂a
ln Zψ + βz(a, z)

∂

∂z
ln Zψ + αγα(a, z)

∂

∂α
ln Zψ

(3.4)

in terms of the renormalization constants where we have set a = e2/(16π2) and z = ξ 2/(16π2).
In these definitions (3.4), we have not assumed that γα(a, z) = 1 which is the case in a linear
covariant gauge. Clearly, the wavefunction renormalizations will also depend on α. Moreover,
in these definitions where our explicit renormalization constants are clearly independent of one
of the coupling constants or gauge parameter, we have included this property in the derivation
of (3.2) and (3.4). For instance, Ze turns out to be independent of both a and α.

The full three-loop renormalization is performed for the massless case using the Mincer
algorithm [24, 25], written in the symbolic manipulation language form [26]. The Feynman
diagrams are generated automatically with the QGRAF package [27], before being converted
into FORM input notation by converter routines. The numbers of Feynman diagrams we
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Table 1. Number of Feynman diagrams for the renormalization of each Green’s function.

Green’s function One loop Two loop Three loop Total

AµAν 3 18 254 275
cc̄ 1 6 78 85
ψψ̄ 1 6 78 85
Aµc̄c 2 33 688 723
Aµψ̄ψ 2 33 688 723

Total 9 96 1786 1891

compute at each loop order for the set of Green’s functions we need to consider to
render (2.3) finite are given in table 1. The wavefunction renormalizations are deduced from
the photon, Faddeev–Popov and electron two-point functions, whilst the three-point functions
determine the coupling constant renormalizations. For the latter given that the coupling
constant renormalizations are gauge independent, we have a strong check on the wavefunction
calculations. Also for these, to apply the MINCER algorithm an external momentum has to be
nullified. This is because MINCER computes massless two-point functions up to the finite part
at three loops. The extraction of each of the renormalization constants is found by applying
the approach of [28] for automatic Feynman diagram calculations. The two- or three-point
functions are computed as a function of the bare parameters. Then these are replaced by the
renormalized variables from (3.1) and the undetermined renormalization constant for that two-
or three-point function chosen so as to absorb the infinities which remain. The latter appear as
poles in ε and are absorbed into the renormalization constants with the usual MS definition.
Prior to presenting the results of our labours, we note that one main check is that the double
pole in ε at two loops and the double and triple poles at three loops for any renormalization
constant are predetermined by the structure of the renormalization group equation. In the
expressions we present for the anomalous dimensions and β-functions all the renormalization
constants passed this test.

Hence, the complete set of three-loop MS renormalization group functions is

βa(a) = 1

2
[d − 4]a +

4

3
Nf a2 + 4Nf a3 −

[
44

9
N2

f + 2Nf

]
a4 + O(a5)

βz(a, z) = 1

2
[d − 4]z +

4

3
Nf za + 4Nf za2 −

[
44

9
N2

f + 2Nf

]
za3 + O(za4)

γA(a) = 4

3
Nf a + 4Nf a2 −

[
44

9
N2

f + 2Nf

]
a3 + O(a4)

γα(a, z) = −4

3
Nf a − [2α2 − 3α + 3]

z

2α
− 4Nf a2 − [5α − 16]

Nf za

3α

− [
21α3 − 20α2 − 29α + 60

] z2

16α
+

[
44

9
N2

f + 2Nf

]
a3

− [
(140α − 240)N2

f + (1215α − 1296ζ(3)α − 6210 + 5184ζ(3))Nf

] za2

54α

− [30α2 − 61α − 31]
Nf z2a

8α

− [264ζ(3)α4 + 370α4 − 48ζ(3)α3 − 116α3 − 1008ζ(3)α2

− 1093α2 + 432ζ(3)α + 1778α + 360ζ(3) − 367]
z3

128α
+ O(zna4−n)
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γc(a, z) = 1

4
[3 − α]z − 5

6
Nf za − 1

32
[5α2 − 16α − 5]z2

− [
140N2

f + (1215 − 1296ζ(3))Nf

] za2

108
+ [13 − 17α]

Nf z2a

16

− [111α3 − 48ζ(3)α2 − 28α2 − 192ζ(3)α − 273α − 144ζ(3) + 410]
z3

256
+ O(zna4−n)

γψ(a, z) = αa − [4Nf + 3]
a2

2
− [3α2 − 4α + 1]

za

4
+

[
40N2

f + 54Nf + 27
]a3

18

+ [(9α − 20)Nf − 8α3 + 24ζ(3)α − 32α − 72ζ(3) + 72]
za2

4
− [336ζ(3)α3 − 323α3 − 432ζ(3)α2 + 480α2 + 48ζ(3)α

− 197α + 432ζ(3) − 344]
z2a

64
+ O(zna4−n), (3.5)

where the formal-order symbol O(znal−n) means all appropriate possible combinations of the
coupling constants a and z at the lth loop. In both β-functions, the d-dimensional dependence
has been retained as an indication of our conventions in deriving the renormalization group
functions as well as for the reader interested in constructing the original renormalization
constants from the differential equations of (3.2) and (3.4).

Aside from the internal checks based on consistency with the renormalization group
equation there are additional checks on these results. First, both β-functions correctly emerge
as α independent and βa(a) is in total agreement with the original linear covariant gauge result
of [19–22]. Also the photon anomalous dimension is proportional to βa(a) as required by the
Ward identity. Further, in the limit z → 0, the anomalous dimensions agree with those of the
linear covariant gauge fixing [28]. Finally, one must recover a theory of free photons when
the electron interaction is switched off via a → 0. Clearly, βz(0, z) = 0 which corresponds
to a free field theory when ξ �= 0 even though neither γα(0, z), γc(0, z) nor γψ(0, z) are zero.
An additional comment on our results is that γψ(a, 0) has clearly only α dependence at one
loop. This was originally observed in [29], where it was claimed that the only α dependence of
γψ(a, 0) was at one loop. Clearly, in a nonlinear covariant gauge there is α dependence beyond
one loop which is not unexpected. Finally, in relation to the renormalization of the gauge
parameter in other conventions, we record the sum of γA(a) and γα(a, z) is

γA(a) + γα(a, z) = −[2α2 − 3α + 3]
z

2α
− [5α − 16]

Nf za

3α

− [21α3 − 20α2 − 29α + 60]
z2

16α
− [30α2 − 61α − 31]

Nf z2a

8α

− [
(140α − 240)N2

f + (1215α − 1296ζ(3)α − 6210 + 5184ζ(3))Nf

] za2

54α

− [264ζ(3)α4 + 370α4 − 48ζ(3)α3 − 116α3 − 1008ζ(3)α2

− 1093α2 + 432ζ(3)α + 1778α + 360ζ(3) − 367]
z3

128α
+ O(zna4−n) (3.6)

which is clearly nonzero for z �= 0. Moreover, like the MAG, (see, for instance, [15]), the
corresponding anomalous dimension is also singular in the α → 0 limit, though similarly the
remaining renormalization group functions, including the β-functions, are finite in this limit.
For γA(a), γc(a, z) and γψ(a, z) this is primarily because in (3.3) and (3.4), the term involving
γα(a, z) is multiplied by α and ZA,Zc and Zψ themselves are non-singular at α = 0.
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Finally, it might be tempting to try and remove the α = 0 singularity in γα(a, z) by
a suitable coupling constant redefinition. Whilst this would produce renormalization group
functions analytic in α, one must be careful in ensuring that the original theory is retained. For
instance, to remove the 1/α terms in γα(a, z) the least one must do is to redefine z by a factor
proportional to α. In the simplest case, setting z = αz̄ one would formally have non-singular
renormalization group functions. However, in this instance returning to (2.3) in the absence
of electrons the Landau gauge Lagrangian would then describe self-interacting photons with
non-interacting ghosts. This is not consistent with the notion that without electrons the photon
is a free field. Therefore given this, avoiding what might be perceived to be a problem in
a renormalization group function, which has no physical interpretation, in order to render it
analytic, has a significant affect on the nature of the original theory. In other words whilst it
might seem unnatural to have a theory with couplings which are singular as α → 0 leading to
a singular anomalous dimension, the nature of the theory remains consistent.

4. Discussion

We have completed the full three-loop renormalization of QED in the nonlinear ’t Hooft–
Veltman gauge. This extends the one-loop calculations of [17, 18]. Whilst the authors of
[17, 18] were the first to observe that the longitudinal part of the photon is renormalized
unlike in a linear gauge, we have carried out a slightly more general analysis by allowing
for a covariant gauge parameter α and the inclusion of an additional coupling ξ in order to
track the loop calculation in a similar way to the usual coupling constant a. The coupling ξ

was not initially fixed to a specific value. Consequently, the singular renormalization of the
gauge parameter emerges. Whilst this is not a new feature of a nonlinear gauge fixing, since
the MAG of QCD has the same property, it does not disrupt either the renormalizabilty of
the theory [16], or the evaluation of gauge-independent quantities such as the β-functions.
This is primarily because although the gauge in one sense is only defined in the α → 0 limit
(2.3), the anomalous dimension of α (3.6) has no physical meaning or interpretation.
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